top of page
Closeup of Scientific microscope data analysis in the laboratory, study for making vaccine



Check out our video below 

Dr. Sara Brenner

Associate Professor of Nanobioscience
Assistant Vice President for NanoHealth Initiatives

College of Nanoscale Science and Engineering, SUNY Polytechnic Institute



Over the last five years, the CytoViva enhanced darkfield microscope with hyperspectral imaging (EDFM-HSI) has become an

integral part of our team’s research portfolio in nanobioscience.  The system is extremely valuable in advancing our work in numerous areas including occupational health and safety, environmental health, toxicology, public health, and medicine.  The CytoViva system allows us to  visualize, identify, and semi-quantitate engineered nanomaterials (ENMs) in complex matrices, such as biological or environmental media, and provides unique images and data at the nanoscale.  For example, we use it to analyze histological tissues from animal toxicology studies, airborne nanoparticulate captured on filter media from workplaces, complex industrial wastewater streams, and various raw nanomaterials.  It has proven especially useful in areas where conventional tools, such as electron microscopy, are too slow, costly, and cumbersome for routine analysis.  The speed and utility of EDFM-HSI is a key advantage over other modalities, and it holds tremendous potential in terms of rapid, high-throughput sample screening.

In order to create accurate reference spectral libraries (RSLs), particularly for sample sets that lack a true positive control, we have utilized Raman spectroscopy (RS) to confirm the identity of the ENMs before creating an RSL from the RS-verified particles. For us, that means taking a sample from the CytoViva scope to a Raman tool in a different lab in a different building on our campus, then beginning the tedious process of locating the same area within the sample for RS analysis.  This has literally cost my team years of productivity on specific projects.  To have an integrated CytoViva EDFM-HSI/RS system would be enormously beneficial, as it would significantly expedite sample analysis and reduce errors that could be made going when moving the sample between tools in different physical locations.  In reality, for many types of complex real-world samples for which the system is poised to analyze, this capability will be critical as it would allow for rapid ENM identification within samples in combination with direct visualization – this would provide crucial data, which is extremely costly and time-consuming to acquire through the use of other currently available modalities.

Reference Publication
Roth GA, Sosa Peña M del P, Neu-Baker NM, Tahiliani S, Brenner SA. Identification of Metal Oxide Nanoparticles in Histological Samples by Enhanced Darkfield Microscopy and Hyperspectral Mapping. Journal of Visualized Experiments : JoVE. 2015;(106):53317. doi:10.3791/53317.


Additional Featured Publications
Sosa Peña MP, Gottipati A, Tahiliani S, Neu-Baker NM, Frame MD, Friedman AJ, Brenner SA. Hyperspectral imaging of nanoparticles in biological samples: simultaneous visualization and elemental identification. Microscopy Research and Technique 2016. Early view published online.

Guttenberg, M., Bezerra, L., Neu-Baker, N. M., del Pilar Sosa Idelchik, M., Elder, A., Oberdörster, G. and Brenner, S. A. (2016), Biodistribution of inhaled metal oxide nanoparticles mimicking occupational exposure: a preliminary investigation using enhanced darkfield microscopy. J. Biophoton, 9: 987–993. doi:10.1002/jbio.201600125.

Roth, G. A., Tahiliani, S., Neu-Baker, N. M. and Brenner, S. A. (2015), Hyperspectral microscopy as an analytical tool for nanomaterials. WIREs Nanomed Nanobiotechnol, 7: 565–579. doi:10.1002/wnan.1330.




Dr. Andrij Holian

Department Biomedical and Pharmaceutical Sciences
Center for Environmental Health Sciences

University of Montana



We are writing this letter to describe the benefit of the CytoViva technology and the great support we have received from the CytoViva team.

We purchased the instrumentation in July 2014. Since then we have used the darkfield and hyperspectral imaging (HSI) to detect particles in both tissue sections and cultured cells. We have successfully imaged metals such as gold and silver in addition to metal oxides like titanium dioxide and nickel oxide using ‘spectral angle mapping’ techniques. In contrast, this did not work well with our main particle of interest, multi-walled carbon nanotubes. Fortunately, CytoViva developed an alternative called ‘spectral feature fitting’ that does work well with these difficult to image particles. We are about to submit our first paper using this technique for MWCNT and it was indispensable for the work we were doing. This could not have happened without the strong support from the CytoViva team. We want to acknowledge not only that unique capability of the instrumentation, but also the continued support that we continue to receive from CytoViva long after our purchase.

The CytoViva has generated a lot of interest with other investigators to the point that we have to schedule users and training on the instrument. We look forward to adding Raman capability. This is one of the best instrument purchases we have made, as it fits so well with our research missions.


Reference Publication
Andrij Holian, Raymond F. Hamilton Jr, Zhequion Wu, Sanghamitra Deb, Kevin L. Trout, Zhiqian Wang, Rohit Bhargava & Somenath Mitra (2019) Lung deposition patterns of MWCNT vary with degree of carboxylation, Nanotoxicology, 13:2, 143-159, DOI: 10.1080/17435390.2018.1530392.



Rawil F Fakhrullin, PhD

Department of Microbiology and Bionanotechnology

Kazan Federal University 



When I first received an email from CytoViva, Inc., it ended up in my SPAM folder. However, I was somewhat interested by the technology, checked the literature (which was quite limited in 2011), and finally, in December 2013, we received our system delivered and installed. Since then, it has been utilized extensively in our lab as a primary instrument, resulting in fruitful work.

First, we mostly used our microscope for typical applications such as investigating the uptake and bio-distribution of nanoscale particles. As my team concentrated on the fabrication of biomedical materials, such as drug delivery vehicles, tissue engineering scaffolds, and antimicrobial coatings, CytoViva provided us with excellent opportunities for fast and reliable evaluation of nanoparticles' effects in vitro and in vivo.

Recently, we focused on nano and microplastic toxicity mechanisms studies. CytoViva hyperspectral darkfield microscopy has been invaluable because it can image and spectrally identify nanoscale non-plasmonic particles, such as 100 nm polystyrene nanospheres, in water, cells, and organisms.

Finally, we used CytoViva's darkfield imaging to record and investigate the dynamic behavior of naturally-occurring nanoparticles. Combining CytoViva real-time imaging with artificial intelligence is insightful when one desires to unravel the diffusive dynamics of natural colloids.

Referenced Publications

Läysän Nigamatzyanova, Rawil Fakhrullin, Dark-field hyperspectral microscopy for label-free microplastics and nanoplastics detection and identification in vivo: A Caenorhabditis elegans study, Environmental Pollution, Volume 271, 2021, 116337, ISSN 0269-7491,

Rawil Fakhrullin, Läysän Nigamatzyanova, Gölnur Fakhrullina, Dark-field/hyperspectral microscopy for detecting nanoscale particles in environmental nanotoxicology research, Science of The Total Environment, Volume 772, 2021, 145478, ISSN 0048-9697,

Farida Akhatova, Anna Danilushkina, Gamze Kuku, Melike Saricam, Mustafa Culha, Rawil Fakhrullin, Simultaneous Intracellular Detection of Plasmonic and Non-Plasmonic Nanoparticles Using Dark-Field Hyperspectral Microscopy, Bulletin of the Chemical Society of Japan, 2018, 91:11, 1640-1645.


March 2019-3-ASSA.jpg

Robert Vince, PhD

Director, Center for Drug Design (CDD)

University of Minnesota



I am writing this letter to offer a testimonial to the unique value the CytoViva Enhanced Darkfield/Hyperspectral Imaging system has brought to my laboratory at the Center for Drug Design at the University of Minnesota.

We have used the system extensively since first purchasing in 2009. One of the more prominent example projects involved our work on the early detection of Alzheimer disease via spectral imaging of specific beta amyloid proteins. We leveraged the optical imaging and spectral analysis capabilities of the CytoViva system to first verify the existence of these proteins in retinal tissue of deceased Alzheimer patients. We then progressed to doing the same in the blood stream of genetically engineered mice (ex-vivo via the blood vessels in the retina) and are now testing this same process on live test patients. The CytoViva Enhanced Darkfield/Hyperspectral Imaging system was key in identifying the spectral signals of the targeted proteins in retinal tissue samples which set the stage for later tests on the vascular structure of the retinal in live subjects. CytoViva, Inc. also helped develop customized imaging tools for examining the retinas of live mice ad human test subjects.

This is just one example if the utility of this system in our research and development efforts here at the University of Minnesota.  We anticipate many more similar examples of the success in the future.


Reference Publications
Swati S. More and Robert Vince, (2015) Hyperspectral Imaging Signatures Detect Amyloidopathy in Alzheimer’s Mouse Retina Well before Onset of Cognitive Decline, ACS Chemical Neuroscience6 (2), 306-315, DOI: 10.1021/cn500242z.

Swati S. More, James M. Beach, Robert Vince; Early Detection of Amyloidopathy in Alzheimer’s Mice by Hyperspectral Endoscopy. Invest. Ophthalmol. Vis. Sci. 2016;57(7):3231-3238. doi: 10.1167/iovs.15-17406.

Robert Vince, Swati Sudhakar More, Hyperspectral imaging for early detection of Alzheimer’s Disease, US9585558B2, United States Patent and Trademark Office, 17 March, 2017.



Dr. Vladimir V. Tsukruk

Regents Professor and Dean’s Professor  of Engineering
School of Materials Science and Engineering

Georgia Institute of Technology



The Cytoviva hyperspectral instrument has allowed our lab capabilities to expand dramatically. Single particle studies, easy swapping between fluorescence and dark field measurements, and software ease of use allow us to collect results that would have taken much longer with other available instruments. This instrument sees high demand constantly from researchers both inside and outside of our group, and it has been our best purchase in recent years.


Reference Publications
Zhang, Shuaidi, Yu, Shengtao, Zhou, Jing, Ponder, James F., Smith, Marcus J., Reynolds, John R., and Tsukruk, Vladimir V. Heterogeneous forward and backward scattering modulation by polymer-infused plasmonic nanohole arrays. United Kingdom: N. p., 2019. Web. doi:10.1039/C9TC00070D.

Lin, C. H., Zeng, Q., Lafalce, E., Yu, S., Smith, M. J., Yoon, Y. J., Chang, Y., Jiang, Y., Lin, Z., Vardeny, Z. V., Tsukruk, V. V.  Large‐Area Lasing and Multicolor Perovskite Quantum Dot Patterns. Advanced Optical Materials 2018, 6, 1800474.

Malak, S., Yoon, Y.J., Smith, M.A., Lin, C.H., Jung, J., Lin, Z., & Tsukruk, V.V. (2017). Decay-to-Recovery Behavior and on–off Recovery of Photoluminescence Intensity from Core/Shell Quantum Dots. ACS Photonics, 4, 7, 1691-1704.


Dr. Melissa Vetten

Medical Scientist

School of Materials Science and Engineering
Toxicology Department

NIOH, South Africa



The Toxicology Department at the National Institute for Occupational Health (NIOH) purchased a CytoViva HSI system in 2011. We have always had a very good working relationship with the CytoViva team who have always been helpful, providing prompt support when it came to technical issues with the system and guidance when it came to bench top preparation of samples.

The CytoViva system is used extensively in our department to investigate the uptake and toxicity of micro- and nano-particles, of both incidental and engineered origins. The enhanced darkfield microscopy provides a quick and easy method to assess uptake of particulates into cells in vitro. The system has also been used on in vivo samples to assess the localization of nanomaterial in lung tissue slices and ecotoxicological samples (Zebra fish, Daphnia). The hyperspectral imaging feature and spectral angle mapping has enabled us to positively identify nanoparticles in our samples without fluorescent labeling or tedious TEM preparation. Results from these projects have been published in International Peer Reviewed journals.


Reference Publications
Jiya M. George, Millicent Magogotya, Melissa A. Vetten, Antoinette V. Buys, Mary Gulumian, From the Cover: An Investigation of the Genotoxicity and Interference of Gold Nanoparticles in Commonly Used In Vitro Mutagenicity and Genotoxicity Assays, Toxicological Sciences, Volume 156, Issue 1, March 2017, Pages 149–166,

Get a Quote

Contact us if you would like to learn more or request a quotation for our products.

Thanks for submitting!
bottom of page